
A Generalized Recurrent Neural Architecture
for Text Classification with Multi-Task Learning

Honglun Zhang1, Liqiang Xiao1, Yongkun Wang2, Yaohui Jin1,2

1State Key Lab of Advanced Optical Communication System and Network
2Network and Information Center
Shanghai Jiao Tong University

{ykw}@sjtu.edu.cn

Abstract
Multi-task learning leverages potential correlations
among related tasks to extract common features
and yield performance gains. However, most pre-
vious works only consider simple or weak inter-
actions, thereby failing to model complex corre-
lations among three or more tasks. In this paper,
we propose a multi-task learning architecture with
four types of recurrent neural layers to fuse infor-
mation across multiple related tasks. The architec-
ture is structurally flexible and considers various in-
teractions among tasks, which can be regarded as
a generalized case of many previous works. Ex-
tensive experiments on five benchmark datasets for
text classification show that our model can signifi-
cantly improve performances of related tasks with
additional information from others.

1 Introduction
Neural network based models have been widely exploited
with the prosperities of Deep Learning [Bengio et al., 2013]
and achieved inspiring performances on many NLP tasks,
such as text classification [Chen et al., 2015; Liu et al.,
2015a], semantic matching [Liu et al., 2016d; 2016a] and ma-
chine translation [Sutskever et al., 2014]. These models are
robust at feature engineering and can represent words, sen-
tences and documents as fix-length vectors, which contain
rich semantic information and are ideal for subsequent NLP
tasks.

One formidable constraint of deep neural networks (DNN)
is their strong reliance on large amounts of annotated cor-
pus due to substantial parameters to train. A DNN trained
on limited data is prone to overfitting and incapable to gen-
eralize well. However, constructions of large-scale high-
quality labeled datasets are extremely labor-intensive. To
solve the problem, these models usually employ a pre-trained
lookup table, also known as Word Embedding [Mikolov et
al., 2013b], to map words into vectors with semantic implica-
tions. However, this method just introduces extra knowledge
and does not directly optimize the targeted task. The problem
of insufficient annotated resources is not solved either.

Multi-task learning leverages potential correlations among
related tasks to extract common features, increase corpus

size implicitly and yield classification improvements. In-
spired by [Caruana, 1997], there are a large literature dedi-
cated for multi-task learning with neural network based mod-
els [Collobert and Weston, 2008; Liu et al., 2015b; 2016b;
2016c]. These models basically share some lower layers to
capture common features and further feed them to subsequent
task-specific layers, which can be classified into three types:

• Type-I One dataset annotated with multiple labels and
one input with multiple outputs.

• Type-IIMultiple datasets with respective labels and one
input with multiple outputs, where samples from differ-
ent tasks are fed one by one into the models sequentially.

• Type-III Multiple datasets with respective labels and
multiple inputs with multiple outputs, where samples
from different tasks are jointly learned in parallel.

In this paper, we propose a generalized multi-task learning
architecture with four types of recurrent neural layers for text
classification. The architecture focuses on Type-III, which
involves more complicated interactions but has not been re-
searched yet. All the related tasks are jointly integrated into
a single system and samples from different tasks are trained
in parallel. In our model, every two tasks can directly interact
with each other and selectively absorb useful information, or
communicate indirectly via a shared intermediate layer. We
also design a global memory storage to share common fea-
tures and collect interactions among all tasks.

We conduct extensive experiments on five benchmark
datasets for text classification. Compared to learning sepa-
rately, jointly learning multiple relative tasks in our model
demonstrate significant performance gains for each task.

Our contributions are three-folds:

• Our model is structurally flexible and considers various
interactions, which can be concluded as a generalized
case of many previous works with deliberate designs.

• Our model allows for interactions among three or more
tasks simultaneously and samples from different tasks
are trained in parallel with multiple inputs.

• We consider different scenarios of multi-task learning
and demonstrate strong results on several benchmark
classification datasets. Our model outperforms most of
state-of-the-art baselines.
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2 Problem Statements
2.1 Single-Task Learning
For a single supervised text classification task, the input is
a word sequences denoted by x = {x1, x2, ..., xT }, and the
output is the corresponding class label y or class distribution
y. A lookup layer is used first to get the vector representation
xi ∈ Rd of each word xi. A classification model f is trained
to transform each x = {x1,x2, ...,xT } into a predicted dis-
tribution ŷ.

f(x1,x2, ...,xT ) = ŷ (1)
and the training objective is to minimize the total cross-
entropy of the predicted and true distributions over all sam-
ples.

L = −
N∑

i=1

C∑

j=1

yij log ŷij (2)

whereN denotes the number of training samples and C is the
class number.

2.2 Multi-Task Learning
GivenK supervised text classification tasks, T1, T2, ..., TK , a
jointly learning model F is trained to transform multiple in-
puts into a combination of predicted distributions in parallel.

F(x(1),x(2), ...,x(K)) = (ŷ(1), ŷ(2), ..., ŷ(K)) (3)

where x(k) are sequences from each tasks and ŷ(k) are the
corresponding predictions.

The overall training objective of F is to minimize the
weighted linear combination of costs for all tasks.

L = −
N∑

i=1

K∑

k=1

λk

Ck∑

j=1

y(k)ij log ŷ(k)ij (4)

where N denotes the number of sample collections, Ck and
λk are class numbers and weights for each task Tk respec-
tively.

2.3 Three Perspectives of Multi-Task Learning
Different tasks may differ in characteristics of the word se-
quences x or the labels y. We compare lots of benchmark
tasks for text classification and conclude three different per-
spectives of multi-task learning.

• Multi-Cardinality Tasks are similar except for cardinal-
ity parameters, for example, movie review datasets with
different average sequence lengths and class numbers.

• Multi-Domain Tasks involve contents of different do-
mains, for example, product review datasets on books,
DVDs, electronics and kitchen appliances.

• Multi-Objective Tasks are designed for different objec-
tives, for example, sentiment analysis, topics classifica-
tion and question type judgment.

The simplest multi-task learning scenario is that all tasks
share the same cardinality, domain and objective, while come
from different sources, so it is intuitive that they can obtain
useful information from each other. However, in the most

complex scenario, tasks may vary in cardinality, domain and
even objective, where the interactions among different tasks
can be quite complicated and implicit. We will evaluate our
model on different scenarios in the Experiment section.

3 Methodology
Recently neural network based models have obtained sub-
stantial interests in many natural language processing tasks
for their capabilities to represent variable-length text se-
quences as fix-length vectors, for example, Neural Bag-of-
Words (NBOW), Recurrent Neural Networks (RNN), Recur-
sive Neural Networks (RecNN) and Convolutional Neural
Network (CNN). Most of them first map sequences of words,
n-grams or other semantic units into embedding representa-
tions with a pre-trained lookup table, then fuse these vectors
with different architectures of neural networks, and finally
utilize a softmax layer to predict categorical distribution for
specific classification tasks. For recurrent neural network, in-
put vectors are absorbed one by one in a recurrent way, which
makes RNN particularly suitable for natural language pro-
cessing tasks.

3.1 Recurrent Neural Network
A recurrent neural network maintains a internal hidden state
vector ht that is recurrently updated by a transition function
f . At each time step t, the hidden state ht is updated accord-
ing to the current input vector xt and the previous hidden state
ht−1.

ht =

{
0 t = 0
f(ht−1,xt) otherwise (5)

where f is usually a composition of an element-wise nonlin-
earity with an affine transformation of both xt and ht−1.

In this way, recurrent neural networks can comprehend a
sequence of arbitrary length into a fix-length vector and feed
it to a softmax layer for text classification or other NLP tasks.
However, gradient vector of f can grow or decay exponen-
tially over long sequences during training, also known as the
gradient exploding or vanishing problems, which makes it
difficult to learn long-term dependencies and correlations for
RNNs.

[Hochreiter and Schmidhuber, 1997] proposed Long
Short-Term Memory Network (LSTM) to tackle the above
problems. Apart from the internal hidden state ht, LSTM
also maintains a internal hidden memory cell and three gating
mechanisms. While there are numerous variants of the stan-
dard LSTM, here we follow the implementation of [Graves,
2013]. At each time step t, states of the LSTM can be fully
represented by five vectors in Rn, an input gate it, a forget
gate ft, an output gate ot, the hidden state ht and thememory
cell ct, which adhere to the following transition functions.

it = σ(Wixt +Uiht−1 +Vict−1 + bi) (6)
ft = σ(Wfxt +Ufht−1 +Vfct−1 + bf ) (7)
ot = σ(Woxt +Uoht−1 +Voct−1 + bo) (8)
c̃t = tanh(Wcxt +Ucht−1) (9)
ct = ft ⊙ ct−1 + it ⊙ c̃t (10)
ht = ot ⊙ tanh(ct) (11)
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where xt is the current input, σ denotes logistic sigmoid func-
tion and ⊙ denotes element-wise multiplication. By selec-
tively controlling portions of the memory cell ct to update,
erase and forget at each time step, LSTM can better com-
prehend long-term dependencies with respect to labels of the
whole sequences.

3.2 A Generalized Architecture
Based on the LSTM implementation of [Graves, 2013], we
propose a generalized multi-task learning architecture for text
classification with four types of recurrent neural layers to
convey information inside and among tasks. Figure 1 il-
lustrates the structure design and information flows of our
model, where three tasks are jointly learned in parallel.

As Figure 1a shows, each task owns a LSTM-based Sin-
gle Layer for intra-task learning. Pair-wise Coupling Layer
and Local Fusion Layer are designed for direct and indi-
rect inter-task interactions. And we further utilize a Global
Fusion Layer to maintain a global memory for information
shared among all tasks.

Single Layer
Each task owns a LSTM-based Single Layer with a collection
of parameters Φ(k), taking Eqs.(9) for example.

c̃(k)t = tanh(W(k)
c x(k)

t +U(k)
c h(k)

t−1) (12)
Input sequences of each task are transformed into vector

representations (x(1),x(2), ...,x(K)), which are later recur-
rently fed into the corresponding Single Layers. The hidden
states at the last time step h(k)

T of each Single Layer can be re-
garded as fix-length representations of the whole sequences,
which are followed by a fully connected layer and a softmax
non-linear layer to produce class distributions.

ŷ(k) = softmax(W(k)h(k)
T + b(k)) (13)

where ŷ(k) is the predicted class distribution for x(k).

Coupling Layer
Besides Single Layers, we design Coupling Layers to model
direct pair-wise interactions between tasks. For each pair
of tasks, hidden states and memory cells of the Single Lay-
ers can obtain extra information directly from each other, as
shown in Figure 1b.

We re-define Eqs.(12) and utilize a gating mechanism to
control the portion of information flows from one task to an-
other. The memory content c̃(k)t of each Single Layer is up-
dated on the leverage of pair-wise couplings.

c̃(k)t = tanh(W(k)
c x(k)

t +
K∑

j=1

g(j→k)U(j→k)
c h(j)

t−1) (14)

g(j→k) = σ(W(k)
gc x(k)

t +U(j)
gc h

(j)
t−1) (15)

where g(j→k) controls the portion of information flow from
Tj to Tk, based on the correlation strength between x(k)

t and
h(j)
t−1 at the current time step.
In this way, the hidden states and memory cells of each

Single Layer can obtain extra information from other tasks
and stronger relevance results in higher chances of reception.

h1(1)

hT(1)

h1(2)

hT(2)

h1(3)

hT(3)

y(1)

y(2)

y(3)

softmax(1)
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CL<2,3>

LFL<2,3>

CL<1,3>

LFL<1,3>
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softmax(3)
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GFL
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xT(2)
x1(3)

xT(3)

(a) Overall architecture with Single Layers, Coupling Layers, Local
Fusion Layers and Global Fusion Layer
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x1(1) x2(1) xT(1)
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(b) Details of Coupling Layer Between T1 and T2

softmax(1)

softmax(2)

y(1)

y(2)

hT(1)h1(1) h2(1)
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x1(1) x2(1) xT(1)

x1(2) x2(2) xT(2)

(c) Details of Local Fusion Layer Between T1 and T2

Figure 1: A generalized recurrent neural architecture for
modeling text with multi-task learning

Local Fusion Layer
Different from Coupling Layers, Local Fusion Layers in-
troduce a shared bi-directional LSTM Layer to model indi-
rect pair-wise interactions between tasks. For each pair of
tasks, we feed the Local Fusion Layer with the concatena-
tion of both inputs, x(j,k)

t = x(j)
t ⊕ x(k)

t , as shown in Fig-
ure 1c. We denote the output of the Local Fusion Layer as
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h(j,k)
t =

−→
h (j,k)

t ⊕
←−
h (j,k)

t , a concatenation of hidden states
from the forward and backward LSTM at each time step.

Similar to Coupling Layers, hidden states and memory
cells of the Single Layers can selectively decide how much
information to accept from the pair-wise Local Fusion Lay-
ers. We re-define Eqs.(14) by considering the interactions
between the memory content c̃(k)t and outputs of the Local
Fusion Layers as follows.

c̃(k)t = tanh(W(k)
c x(k)

t +C(k)
t + LF(k)

t ) (16)

LF(k)
t =

K∑

j=1,j ̸=k

g(j,k)U(j,k)
c h(j,k)

t (17)

g(j,k) = σ(W(k)
gf x(k)

t +U(j)
gf h

(j,k)
t ) (18)

whereC(k)
t denotes the coupling term in Eqs.(14) and LF(k)

t
represents the local fusion term. Again, we employ a gating
mechanism g(j,k) to control the portion of information flow
from the Local Coupling Layers to Tk.

Global Fusion Layer
Indirect interactions between Single Layers can be pair-wise
or global, so we further propose the Global Fusion Layer as
a shared memory storage among all tasks. The Global Fusion
Layer consists of a bi-directional LSTMLayer with the inputs
x(g)
t = x(1)

t ⊕ x(2)
t ⊕ · · · ⊕ x(K)

t and the outputs h(g)
t =

−→
h (g)

t ⊕
←−
h (g)

t .
We denote the global fusion term as GF(k)

t and the mem-
ory content c̃(k)t is calculated as follows.

c̃(k)t = tanh(W(k)
c x(k)

t +C(k)
t + LF(k)

t +GF(k)
t ) (19)

GF(k)
t = σ(W(k)

gg x(k)
t +U(k)

gg h
(g)
t )U(g)

c h(g)
t (20)

As a result, our architecture covers complicated interac-
tions among different tasks. It is capable of mapping a col-
lection of input sequences from different tasks into a combi-
nation of predicted class distributions in parallel, as shown in
Eqs.(3).

3.3 Sampling & Training
Most previous multi-task learning models [Collobert and We-
ston, 2008; Liu et al., 2015b; 2016b; 2016c] belongs to
Type-I or Type-II. The total number of input samples is
N =

∑K
k=1 Nk, where Nk are the sample numbers of each

task.
However, our model focuses on Type-III and requires a

4-D tensor N × K × T × d as inputs, where N,K, T, d
are total number of input collections, task number, sequence
length and embedding size respectively. Samples from differ-
ent tasks are jointly learned in parallel so the total number of
all possible input collections is Nmax =

∏K
k=1 Nk. We pro-

pose a Task Oriented Sampling algorithm to generate sam-
ple collections for improvements of a specific task Tk.

Given the generated sequence collectionsX and label com-
binationsY, the overall loss function can be calculated based
on Eqs.(4) and (13). The training process is conducted in a

Algorithm 1 Task Oriented Sampling
Input: Ni samples from each task Ti; k, the oriented task

index; n0, upsampling coefficient s.t. N = n0Nk

Output: sequence collectionsX and label combinationsY
1: for each i ∈ [1,K] do
2: generate a set Si with N samples for each task:
3: if i = k then
4: repeat each sample for n0 times
5: else if Ni ≥ N then
6: randomly selectN samples without replacements
7: else
8: randomly select N samples with replacements
9: end if

10: end for
11: for each j ∈ [1, N ] do
12: randomly select a sample from each Si without re-

placements
13: combine their features and labels as Xj and Yj

14: end for
15: merge all Xj and Yj to produce the sequence collections

X and label combinationsY

stochastic manner until convergence. For each loop, we ran-
domly select a collection from the N candidates and update
the parameters by taking a gradient step.

4 Experiment
In this section, we design three different scenarios of multi-
task learning based on five benchmark datasets for text clas-
sification. we investigate the empirical performances of our
model and compare it to existing state-of-the-art models.

4.1 Datasets
As Table 1 shows, we select five benchmark datasets for text
classification and design three experiment scenarios to evalu-
ate the performances of our model.

• Multi-Cardinality Movie review datasets with differ-
ent average lengths and class numbers, including SST-
1 [Socher et al., 2013], SST-2 and IMDB [Maas et al.,
2011].

• Multi-Domain Product review datasets on different do-
mains from Multi-Domain Sentiment Dataset [Blitzer
et al., 2007], including Books, DVDs, Electronics and
Kitchen.

• Multi-Objective Classification datasets with different
objectives, including IMDB, RN [Apté et al., 1994] and
QC [Li and Roth, 2002].

4.2 Hyperparameters and Training
The whole network is trained through back propagation with
stochastic gradient descent [Amari, 1993]. We obtain a pre-
trained lookup table by applying Word2Vec [Mikolov et al.,
2013a] on the Google News corpus, which contains more than
100B words with a vocabulary size of about 3M. All involved
parameters are randomly initialized from a truncated normal
distribution with zero mean and standard deviation.
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Table 1: Five benchmark classification datasets: SST, IMDB, MDSD, RN, QC.

Dataset Description Type Length Class Objective

SST Movie reviews in Stanford Sentiment Treebank
including SST-1 and SST-2 Sentence 19 / 19 5 / 2 Sentiment

IMDB Internet Movie Database Document 279 2 Sentiment

MDSD Product reviews on books, DVDs, electronics and
kitchen appliances Document 176 / 189 / 115 / 97 2 Sentiment

RN Reuters Newswire topics classification Document 146 46 Topics
QC Question Classification Sentence 10 6 Question Types

For each task Tk, we conduct TOS with n0 = 2 to improve
its performance. After training our model on the generated
sample collections, we evaluate the performance of task Tk

by comparing ŷ(k) and y(k) on the test set. We apply 10-fold
cross-validation and different combinations of hyperparame-
ters are investigated, of which the best one, as shown in Table
2, is reserved for comparisons with state-of-the-art models.

Table 2: Hyperparameter settings

Embedding size d = 300
Hidden layer size of LSTM n = 100

Initial learning rate η = 0.1
Regularization weight λ = 10−5

4.3 Results
We compare performances of our model with the implemen-
tation of [Graves, 2013] and the results are shown in Ta-
ble 3. Our model obtains better performances in Multi-
Domain scenario with an average improvement of 4.5%,
where datasets are product reviews on different domains with
similar sequence lengths and the same class number, thus
producing stronger correlations. Multi-Cardinality scenario
also achieves significant improvements of 2.77% on average,
where datasets are movie reviews with different cardinalities.

However, Multi-Objective scenario benefits less from
multi-task learning due to lacks of salient correlation among
sentiment, topic and question type. The QC dataset aims to
classify each question into six categories and its performance
even gets worse, which may be caused by potential noises
introduced by other tasks. In practice, the structure of our
model is flexible, as couplings and fusions between some em-
pirically unrelated tasks can be removed to alleviate compu-
tation costs.

Influences of n0 in TOS
We further explore the influence of n0 in TOS on our model,
which can be any positive integer. A higher value means
larger and more various samples combinations, while requires
higher computation costs.

Figure 2 shows the performances of datasets in Multi-
Domain scenario with different n0. Compared to n0 = 1, our
model can achieve considerable improvements when n0 = 2
as more samples combinations are available. However, there
are no more salient gains as n0 gets larger and potential noises
from other tasks may lead to performance degradations. For a

trade-off between efficiency and effectiveness, we determine
n0 = 2 as the optimal value for our experiments.

Figure 2: Influences of n0 in TOS on different datasets

Pair-wise Performance Gain
In order to measure the correlation strength between two task
Ti and Tj , we learn them jointly with our model and define

Pair-wise Performance Gain as PPGij =
√

Pi
′Pj

′

PiPj
, where

Pi, Pj , Pi
′, Pj

′ are the performances of tasks Ti and Tj when
learned individually and jointly.

We calculate PPGs for every two tasks in Table 1 and illus-
trate the results in Figure 3, where darkness of colors indicate
strength of correlation. It is intuitive that datasets of Multi-
Domain scenario obtain relatively higher PPGs with each
other as they share similar cardinalities and abundant low-
level linguistic characteristics. Sentences of QC dataset are
much shorter and convey unique characteristics from other
tasks, thus resulting in quite lower PPGs.

4.4 Comparisons with State-of-the-art Models
We apply the optimal hyperparameter settings and compare
our model against the following state-of-the-art models:

• NBOW Neural Bag-of-Words that simply sums up em-
bedding vectors of all words.

• PV Paragraph Vectors followed by logistic regres-
sion [Le and Mikolov, 2014].

• MT-RNN Multi-Task learning with Recurrent Neural
Networks by a shared-layer architecture [Liu et al.,
2016c].
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Table 3: Results of our model on different scenarios

Model Multi-Cardinality Multi-Domain Multi-Objective
SST-1 SST-2 IMDB Books DVDs Electronics Kitchen IMDB RN QC

Single Task 45.9 85.8 88.5 78.0 79.5 81.2 81.8 88.5 83.6 92.5
Our Model 49.2 87.7 91.6 83.5 84.0 86.2 84.8 89.7 84.2 92.3

Table 4: Comparisons with state-of-the-art models

Model SST-1 SST-2 IMDB Books DVDs Electronics Kitchen QC
NBOW 42.4 80.5 83.62 - - - - 88.2
PV 44.6 82.7 91.7 - - - - 91.8

MT-RNN 49.6 87.9 91.3 - - - - -
MT-CNN - - - 80.2 81.0 83.4 83.0 -
MT-DNN - - - 79.7 80.5 82.5 82.8 -
GRNN 47.5 85.5 - - - - - 93.8

Our Model 49.2 87.7 91.6 83.5 84.0 86.2 84.8 92.3

SST-1

SST-2

IMDB

Books

DVDs

Electronics

Kitchen

QC

SST-1 SST-2 IMDB Books DVDs Electronics Kitchen QC

0.996

1.066

Figure 3: Visualization of Pair-wise Performance Gains

• MT-CNNMulti-Task learning with Convolutional Neu-
ral Networks [Collobert and Weston, 2008] where
lookup tables are partially shared.

• MT-DNN Multi-Task learning with Deep Neural Net-
works [Liu et al., 2015b] that utilizes bag-of-word rep-
resentations and a hidden shared layer.

• GRNN Gated Recursive Neural Network for sentence
modeling [Chen et al., 2015].

As Table 4 shows, our model obtains competitive or bet-
ter performances on all tasks except for the QC dataset, as it
contains poor correlations with other tasks. MT-RNN slightly
outperforms our model on SST, as sentences from this dataset
are much shorter than those from IMDB and MDSD, and an-
other possible reason may be that our model are more com-
plex and requires larger data for training. Our model proposes
the designs of various interactions including coupling, local
and global fusion, which can be further implemented by other
state-of-the-art models and produce better performances.

5 Related Work
There are a large body of literatures related to multi-task
learning with neural networks in NLP [Collobert and Weston,

2008; Liu et al., 2015b; 2016b; 2016c].
[Collobert and Weston, 2008] belongs to Type-I and uti-

lizes shared lookup tables for common features, followed by
task-specific neural layers for several traditional NLP tasks
such as part-of-speech tagging and semantic parsing. They
use a fix-size window to solve the problem of variable-length
texts, which can be better handled by recurrent neural net-
works.

[Liu et al., 2015b; 2016b; 2016c] all belong to Type-
II where samples from different tasks are learned sequen-
tially. [Liu et al., 2015b] applies bag-of-word representa-
tion and information of word orders are lost. [Liu et al.,
2016b] introduces an external memory for information shar-
ing with a reading/writing mechanism for communicating,
and [Liu et al., 2016c] proposes three different models for
multi-task learning with recurrent neural networks. However,
models of these two papers only involve pair-wise interac-
tions, which can be regarded as specific implementations of
Coupling Layer and Fusion Layer in our model.

Different from the above models, our model focuses on
Type-III and utilize recurrent neural networks to comprehen-
sively capture various interactions among tasks, both direct
and indirect, local and global. Three or more tasks are learned
simultaneously and samples from different tasks are trained
in parallel benefitting from each other, thus obtaining better
sentence representations.

6 Conclusion and Future Work
In this paper, we propose a multi-task learning architecture
for text classification with four types of recurrent neural lay-
ers. The architecture is structurally flexible and can be re-
garded as a generalized case of many previous works with
deliberate designs. We explore three different scenarios of
multi-task learning and our model can improve performances
of most tasks with additional related information from others
in all scenarios.

In future work, we would like to investigate further im-
plementations of couplings and fusions, and conclude more
multi-task learning perspectives.
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